POST-PROCESSING SCRIPTS

The post-processing scripting feature allows one to extent the capabilities of WordStat by the writing of
additional computation or data transformation scripts. Those scripts may be written in Python or R using
custom codes or existing libraries for NLP, machine learning, statistical processing, visualization, and
more. Such a feature allows data scientists to focus on the crucial processing step of interest, leaving to
WordStat the various tasks associated with the data preparation and preprocessing such as document
importation, stemming, lemmatization, spelling correction, removal of stop words, and so on. It also allows
one to combine WordStat powerful categorization features (with word patterns, phrases, disambiguation
rules, etc.) with new analytics techniques not available in WordStat.

The additional possibility to design dialog boxes allows data analysts to create simple graphic users’
interfaces that may be used for customizing script execution and facilitate their use by other WordStat
users with no programming skills.

Running an existing Python or R post-processing script:

On the Frequencies page, applying an existing post-processing script can be as simple as these steps:

e Click the " button to open the main post-processing script window.

e The Script dropdown menu lists all existing Python and R scripts. Select the desired script.
Beneath the Script dropdown menu is the Description section. Any text describing the script will
be displayed here. Resizing the post-processing script window may be required to display all of
the description text.

£ Pouprocessing Soripts] X

sorpr [P Chafeaton Bnaey KN with scean v [
Chedfeaton Brary KNN with sidean

Classfication Brary Logetc Regresson with sdeam b dara
" Chssfication Birary Neural Network with sdesn Dot & Query
™, Chsiheanen Brany Random Farest wth sidesn frerict of
* Chsafcanen Brary SVH wih sdesm
B Destrotve ST ngerera a
R Docurment Duse fatrct
i Language Detected breed 1o 3 ey
R’ Lanpage LI,
™) LDA Topa Modeling with Gendrn 2 Ties can b
) Piot Word Detrbaton :‘f"‘r'f_:“;"'
R ReadaGity B B b muppdad B
Sl Pythan - Descrptins Statetcd
#*®, Symole Python - Restabity Statetes B
& Srractural Tope Mode e b
:F Tinthiod - Brmates
) Texnbieh POS Tagger
™ Teutbioh Sentiment Analyss
* Texthiod Spelng comedton
) Textbioh Toksrae:
-)
) e

e Clickthe ®® | putton. For some scripts, no other steps are required, and the Report Manager
will display the output of your script. Running other scripts will result in the appearance of a dialog
box like the one below, allowing you to set some analysis options.

® Options - O *
Floating Point: |0.0002
Section
String: |
[Boolean
List of options: |choose_one v
] " OK { | X cancel

e While the script is running, a Python console or R console will appear, displaying what is logged
or printed as output (stdout) or any error messages.

Output

e If a script is executed successfully, WordStat will import any output stored in any supported file
format and display them in the Report Manager, which will open automatically. WordStat will
import text output stored in any file with a . TXT file extension, assuming an UTF-8 text encoding,
or documents stored in .DOCX, .RTF or HTML files. It will also import table output files with either
.CSV, .TAB, .TSV or .XLS file extension, and any graphic produced with a .JPG, .JPEG, .PNG,
.GIF, or BMP file extension. Once imported, those files are deleted.

e |[f atable created by the script has a column named RECNO containing record numbers, a dialog

box will appear, giving the possibility to append data contained in this table to the current project
data.

The file RESULTS-EXAMPLE.TAB contans record specficc information.

Do you want to append 1 new variables and replace 0 axisting ones?

[Vr=] O

To append data in this table, click Yes. If the table’s column names correspond to existing
variables, data into those variables will be overwritten, while new column names will result in new
variables being appended. Clicking No will append the table to the report manager.

Writing a new Python or R post-processing script

e To create a new post-processing script, open the main post-processing script window by clicking

the " button on the Frequencies page.

e Then click the ./ button next to the Run button and select New script from the dropdown menu.
e Select the desired programming language for this script (Python or R)
e A Script Options window will appear. Type the Name of the new script.

e Optionally, add a Description. This description will appear when the script is selected from the
script selection dropdown box.

[o] Script Options (with punctuations & paragraphs) — O *

Mame: |Example Script

Description: | pescribe the script here]

Document x Term matrix (input.tab): []Frequencies [] Case occurrences [|Rate per 10,000 TFxIDF
[original text data (sources. tab)

[Tokenized & transformed text (tokens,tab): |not segmented ~

X cos

e The options below allow you to select the types of input files that will be generated and processed
by the script. Up to three separate data files can be generated from a choice of seven options.

(e]

The input.tab data file contains numerical values resulting from the quantification of text
data by WordStat where each row represents a document, and columns consist of
frequency information for every item displayed in the Frequencies tab (i.e., either words
or content categories). When no categorization process is applied, such a data file
corresponds to a Document x Term matrix. A choice of one of four statistics may be
stored in this data file: the term’s frequencies, the case occurrences (i.e., either 0 or 1),
The rate of this term per 10,000 words, or its TF-IDF score. If more than one of these
metrics is checked, the user will be asked to select from these options upon execution.

The sources.tab is the original text data stored in a single file, one document per line. To
store a document in a single line carriage returns (ASCII #13) and line feed characters
(ASCII #10 had to be replaced with other characters (ASCII 30 and 31).

The tokens.tab will hold the result of the project’s text processing steps including
preprocessing, word replacements, stop word removal and categorization. By default,
each document is stored on a single line. One may also segment this file by paragraphs
or by sentences.

e Once the script options have been set, click OK to open the script editor window.

2 ShowMedsal - o x
File Edit Run
| =B = &

variable | Type Prompt Description | Options Returned value

e The Variables section at the top allows you to define variables that can be used in the script to
customize its execution. Upon execution of a script, if variables have been defined, a dialog box
will be presented to set those options.

e To add a new variable to the script, click the = button. The variable definition window will
appear.

% Variable Definition - O X

Type:

Prompt: |

Description:

Range: [Minimum: [Masimum: [pefauit:

il Close

e From the Type dropdown menu, select what will be the type of the variable. You may select
among seven types of variables: an integer, a floating point, a string, a Boolean, a string, a list of
options or a project variable. An additional Section type may also be used to group various
options into distinct sections. When such an option is selected, you will be asked to enter a string
that will be displayed in bold character as the title of the section.

¢ In the Name edit box, type the name of this variable. This is the name that should be inserted into
the script source code to customize its execution.

e The prompt edit box is the text that will be displayed on the left of the data editing control. The
Description edit box may also be used to provide additional information about this option. If a
description or instructions are provided, a hint window will display this information upon hovering
the variable data entry control.

o Depending on the variable type, different specifications can be added:

= For a Floating Point or an Integer variable, the range section allows you to set a
Minimum, Maximum and/or Default value. First check the box for the desired range
specification, then increase or decrease the value via the up/down arrows, or by typing in
the numerical value.

= A Boolean variable can be enabled by default, by checking the default box under the
Description textbox.

= For alList of options, the strings that will appear as options to be selected must be
specified in the Options textbox. Each option should be added on a separate line without
guotation marks.

= |f a script includes a Project variable, choose the type of data that will be expected via
the Data type dropdown list. Choosing a data type will restrict the list presented to the
selected data type. Selecting Any type will present a list of all variables on the project.
Checking the Optional checkbox allows the Project variable to be left blank.

e To remove an existing variable, first select the variable to be deleted and then click the =8 button.

Select a variable and click the =5 edit variable button to open the variable definition window and
make any changes to the existing specifications.

Click the ¥ down arrow to change the order of the variables and bring the selected variable down
in the list of variables, or the T up arrow to move the variable up.

The [Z] preview button shows the Options dialog box as it would display when the script is run,
without having to run the script. The dialog box can also be previewed by selecting Test Dialog
Box under the Run menu.

In the example below, the dialog box consists of six variables grouped under two sections:
Classifier Parameters and Evaluation.

fﬁ Script Editor — O X
File Edit Run

HE =S5t =

|Returned value |

Variable | Type Prompt Description | Options

Section Classifier Parameters
dependent_variable Project variable 'Dependent variable
dassifier_type_parameter | Listofoptions | Classifier type SVC;NUSVC;LinearSVC
dassifier_kernel_parameter Listofoptions Classifier kernel type

Section Evaluation
Shuffle each dass's samples
Number of folds =2 Max=10 Def=5
Floating point Proportion to incude in the test split =0, 1000 Max=0.5000 Def=

shuffie_samples_parameter Boolean
nb_splits_parameter Integer

test_size_parameter

Ilmport time ~
import numpy as np

import pandas as pd

import pickle

from sklearn import svm, metrics

from sklearn.model selection import GridSearchCV, StratifiedKFold, learning_curve
from sklearn.pipeline import make pipeline

from sklearn.model selection import train test_split

W om o s W

import matplotlib.pyplot as plt
import seaborn as sns

‘e
=

3
MO

Running the script will cause the following dialog box to appear:

f?. Options — O X
Classifier Parameters
Dependent variable: CANDIDATE v
Classifier type: |SVC v
Classifier kernel type: | rbf ~
Evaluation
@ Shuffle each dass's samples
Number of folds: |5 =
Proportion to incude in the test split:
X coce

The bottom section of the script editor window should contain valid Python or R code, and the
formatting will reflect the syntax of the script’s language. Proper commands for importing needed
libraries should be specified at the beginning of the script. Names of the specified variables may
be used in the script to customize its execution. The Python script below illustrates how one may
use the defined variables in a script (highlighted in yellow) and their associated values set by the
user using the dialog box.

201 data = pd.read_csv(file, sep='\t', encoding='IS0-8858-1")

202 data_clean = data.copy()

203 data_clean = data_clean.drop(columns=[entry number])

204 if data[dependent variable].dtype == 'o

205 & Convert categorical variable to nu

206 tags_list = data[dependent_variable].

207 tags = : i for i, x in enumerate(tags_list)}

208 data_clean['cleaned tag'] = dataiclea::dependent_varlablej .apply(lambda x: tags[x])
209 else:

210 data_clean['cleaned tag'] = data_clean[dependent variable]
211 data_clean = data_clean.drop (columns=dependent_variable)

212 data_X = data_clean.drop(columns='cleansd tag')

213 data_y = data_clean['cleaned_tag']

214

215 # Split the data into training and testing sets

216 return train_test_split(dava_X, data_y,

245 test_size=test_size parameter,

218 random_state=1)

21%

220 |def main():

221 "mrTrain SVM classifier

222 nnw

223 try:

224 # read and split data

225 X_train, X test, y_train, y test = prepare_data(input_file)
226

227 # cross-validation object

228 kfolds = StratifiedKFold(n_splits=nb_splits parameter, shuffle=shuffle samples_parameter, random state=1)
229

230 # Training

231 np.random.seed (1)

232 svc_péxam_gn.d = {}

233 # Linear classifier

234 if classifier type_parameter == 'LinearSVC':

235 pipeline svm = make pipeline |

236 getattr (svm, classlfle:_cype_paramecer\ \cless_welgi':t.:"béla::ed"|)
237 svc_param grid = {'linearsvc_ C': [0.01, 0.1, 0.5, 1]}
238 else:

239 pipeline_svm = make pipeline|

240 getactr (svm, classifier type_parameter) (probability=True, class_weight="balanced"))
241 if classifier type parameter == 'NuSVC':

242 if not classifier kernel parameter == 'linear':

Clicking the [# button will run the script. Any changes made will prompt a dialog box asking if
changes should be saved before running. Running a script from within the script editor opens a
Python or R console. In contrast to running a script from the main post-processing scripts
window, the console will also display the script’s code in the upper half of the window. The code
will include all the variable assignments. Once the script terminates, the console window will have
to be closed for the output to be processed. The script can also be run by selecting Run Script
under the Run menu

A new script can also be created by selecting New under the File menu of the script editor. There
is an option to choose between Python or R.

Save a new script with the & button or by selecting Save from the File menu. Selecting Save as
will open the Script Options window allowing you to enter a new name for the script.

Editing a script

To edit an existing script, first select it from the Script dropdown menu, then click the [~/ button
next to the Run button and select Edit Script.

Variables can be added, deleted, or edited (See details above)

Script Options of an existing script can also be edited by selecting Settings under the Edit menu.
Changes can be made to the code of the script in the Code section of the script editor. Any edits
can be typed into this section or using the Edit menu. Under the Edit menu, you will find common

edits such as Undo, Cut, Copy, Paste, Select all.

Click Find to search for any particular sequence in the code.

Find

Find what: ||

Match whole word only
[Match case

Direction

(O Up (@ Down

Cancel

e Select Replace in the Edit menu to substitute a sequence in the code.

Replace

Find what: ||

Replace with: |

[Match whale word anly
[Match case

Cancel

Importing/Exporting a script

Post-processing scripts created in WordStat (whether Python or R) are saved as ‘.wscr’ files in a distant
folder not easily accessible. The import and export features have been designed to easily copy an
existing script to this folder or create a copy outside of this folder, allowing one to share scripts with other

users.

e To import a script, click the ™! button next to the run button and select Import. Select an .wscr

script from the file explorer and click Open. A script can also be imported by selecting the Import
command from the File menu in the script editor.

e To export a script, first select it, click the ™! button next to the RUN button and select Edit. Then
choose the Export command from the file menu of the script editor. Choose its destination in the

file explorer and click Save

Console

Any libraries that are imported in a post-processing script will automatically be installed as the script is
run. In some cases, a package requires extra steps for installation, which Wordstat cannot perform under-
the-hood. A Python or R console can be opened to perform these installations or any other tasks.

e From the Script Editor window, select Console from the Run menu
e Depending on the language of the script, a Python or R console will open

